
COMP IV Dr. Rykalova

This assignment is based on Princeton CS assignment created by Robert Sedgewick.
Copyright © 2008.

PS1: Linear Feedback Shift Register (part A)
In this assignment you will write a program that produces pseudo-random bits by
simulating a linear feedback shift register, and then use it to implement a simple form of
encryption for digital pictures.

For this portion of the assignment, you will:

• implement the FibLFSR class
• implement unit tests using the Boost test framework

Average time to complete assignment ~5 hours.

What is an LFSR?
A linear feedback shift register (LFSR) is a register that takes a linear function of a
previous state as an input. Most commonly, this function is a Boolean exclusive OR
(XOR). LFSR performs discrete step operations that

• Shifts the bits one position to the left, and
• Replaces the vacated bit by the exclusive or of the bit shifted off and the bit

previously at a given tap position in the register.
In general, a LFSR has three parameters that characterize the sequence of bits
it produces: the number of bits N, the initial seed (the sequence of bits that initializes the
register), and the tap position tap. The following illustrates one step of an 11-bit LFSR
with initial seed 01101000010 and tap position 8.

Diagram 1

Note: the position 0 is at the right of the diagram.

COMP IV Dr. Rykalova

This assignment is based on Princeton CS assignment created by Robert Sedgewick.
Copyright © 2008.

For this assignment you will implement Fibonacci LFSR:

Diagram 2

Fibonacci LFSR Data Type
Your first task is to write a data type that simulates the operation of a 16 bits Fibonacci
LFSR by implementing the following API:

To do so, you need to choose the internal representation (data members), implement the
constructor, and implement the three member functions. These are interrelated activities
and there are several viable approaches.

Constructor. The constructor takes the initial seed as a String argument whose
characters are a sequence of 0s and 1s. The length of the register is the length of the
seed. We will generate each new bit by XORing the leftmost bit and the tap bit, when
using resulting bit as one of the inputs for the next XOR gate, and so on. There are 3
tabs for this assignment in positions 13, 12, and 10 (see diagram 2). For example, the
following code should create the FibLFSR described above.

 Destructor. If your constructor dynamically allocates memory, make sure to define a
destructor that deallocates it.

 String representation. Overload the << stream insertion operator to display its
current register value in printable form (see these instructions
http://www.learncpp.com/cpp-tutorial/93-overloading-the-io-operators/)

class FibLFSR {
public:

FibLFSR(string seed); // constructor to create LFSR with
 // the given initial seed and tap
int step(); // simulate one step and return the

// new bit as 0 or 1
int generate(int k); // simulate k steps and return

// k-bit integer
private: ...
}

FibLFSR flfsr("1011011000110110");

http://www.learncpp.com/cpp-tutorial/93-overloading-the-io-operators/

COMP IV Dr. Rykalova

This assignment is based on Princeton CS assignment created by Robert Sedgewick.
Copyright © 2008.

 Simulate one step. The step() function simulates one step of the LFSR and
returns the rightmost bit as an integer (0 or 1). For example, if you call step() 10 times
the output should be:

 Extracting multiple bits. The member function generate() takes an integer k as
an argument and returns a k-bit integer obtained by simulating k steps of the
LFSR. This task is easy to accomplish with a little arithmetic: initialize a variable to
zero and, for each bit extracted, double the variable and add the bit returned
by step(). For example, if the first 5 bits extracted are 0, then 0, then 0, then 1,
then 1, the variable takes on the values 0, 0, 0, 1, and 3, which is the binary
representation of the bit sequence 00011. For example, call generate(5) should
output:

Implement the generate() function by calling the step() function k times and
performing the necessary arithmetic.

 Testing. Implement unit tests using the Boost test framework.

• Install Boost into your development environment. From the shell:

 sudo apt-get install libboost-test-dev

• See http://www.boost.org/doc/libs/1_53_0/libs/test/doc/html/utf/tutorials.html for
an introduction to using Boost unit testing.
Additional info:
https://www.ibm.com/developerworks/aix/library/au-ctools1_boost/index.html
https://theboostcpplibraries.com/

0110110001101100 0
1101100011011000 0
1011000110110000 0
0110001101100001 1
1100011011000011 1
1000110110000110 0
0001101100001100 0
0011011000011001 1
0110110000110011 1
1101100001100110 0

1100011011000011 3
1101100001100110 6
0000110011001110 14
1001100111011000 24
0011101100000001 1
0110000000101101 13
0000010110111100 28

http://www.boost.org/doc/libs/1_53_0/libs/test/doc/html/utf/tutorials.html
https://www.ibm.com/developerworks/aix/library/au-ctools1_boost/index.html
https://theboostcpplibraries.com/

COMP IV Dr. Rykalova

This assignment is based on Princeton CS assignment created by Robert Sedgewick.
Copyright © 2008.

What to turn in
 The implementation must be contained in files named FibLFSR.cpp and

FibLFSR.h.

 Two additional unit tests in Boost, in a file test.cpp (attached).
You must have two more sets of tests in additional BOOST_AUTO_TEST_CASE
blocks. ach block should be commented with a short discussion.

 Create a Makefile to build your project. You must compile FibLFSR.cpp and
test.cpp, and link them together with the boost_unit_test_framework library into an
executable named ps1a.
Your Makefile should have the targets all, FibLFSR.o, test.o, ps1a,
and clean, and make sure all prerequisites are correct (e.g., LFSR.o should
have LFSR.cpp and LFSR.h as prerequisites).

 Submit a ps1a-readme.txt file that includes:
1. name,
2. an explanation of the representation you used for the register bits (how it works,

and why you selected it)
3. a discussion of what's being tested in your two additional Boost unit tests.

 Make sure all your files are in a directory named ps1a

 If you additionally have a main.cpp file with some printf-style tests, you may include
that too.

How to turn it in
Submit on Blackboard.
Grading rubric
Feature Value Comment

Implementation 4 full & correct implementation

Makefile 2 full & correct implementation

your own test.cpp 2 all files packaged in .tar.gz file with correct directory structure

ps1a-readme.txt 2 complete and discusses work

Total 10

